daily menu » rate the banner | guess the city | one on oneforums map | privacy policy | DMCA | news magazine | posting guidelines

Go Back   SkyscraperCity > World Forums > Skyscrapers

Skyscrapers General news, discussion and announcement forum about skyscrapers, including the Skyscraper Living forum



Global Announcement

As a general reminder, please respect others and respect copyrights. Go here to familiarize yourself with our posting policy.


Reply

 
Thread Tools
Old February 27th, 2013, 08:40 AM   #1
hkskyline
Hong Kong
 
hkskyline's Avatar
 
Join Date: Sep 2002
Posts: 86,508
Likes (Received): 17826

The Skyscraper of Tomorrow

Algae power and flying robots: Welcome to the skyscraper of tomorrow
The engineering giant Arup has outlined its vision for the buildings of 2050. The modules, detailed in the ‘It’s Alive’ report, would have 'nervous systems' reacting to their surroundings
The Independent
Sunday 24 February 2013

Skyscrapers of the future will be serviced by flying robots, run on algae and react to inhabitants’ moods.

A new report has outlined how urban buildings could look in 2050, and each idea, however outlandish it may seem, is in development.

Engineering giant Arup, responding to the pressure of an expected 75 per cent of a nine-billion strong global population living in cities within four decades, predicts buildings will no longer be “passive shells, but things that are much more reactive”, with their own “brains”, “nervous system” and “skin” that allow them to respond to changes in the environment around them and the people who live in them.

Josef Hargrave, a consultant in the foresight and innovation team at Arup, a company that has worked on projects from the Pompidou Centre in Paris to the Shard and the Gherkin in London, has sketched out the skyscraper of the future in his report, “It’s Alive”.

The “nervous system”, for example, could do anything from responding to weather or a person’s mood to reacting to how many people are in a room.

Some “modules” that form the building-blocks of the skyscraper could be used for urban food-production sites housing meat, poultry, fish or vegetable farms. Green spaces inside the tower will “turn the concrete jungle into real jungles,” Mr Hargrave said.

Building facades will become super-complex, changing the way they look throughout the day as well as being environmentally-friendly, by using cement that can absorb carbon dioxide and paint that can harness solar energy.

Much of the building’s energy needs might be met by biofuel created by algae, while wind turbines could manufacture drinking water from humid air. The algae project is already being worked on by scientists in Berlin.

Mr Hargrave’s favourite development is the “flying drones that maintain and assemble the buildings”. Already robotics experts have teamed up with architects to experiment – a fleet of drones recently built a six-metre tower out of foam bricks, working autonomously.

The new buildings will react to changes in society. “I like the idea of new urban communities... remodelling them with more local working, less long-distance travelling, and buildings that offer green spaces,” Mr Hargrave said.
__________________
Hong Kong Photo Gallery - Click Here for the Hong Kong Galleries

World Photo Gallery - | St. Petersburg, Russia | Pyongyang | Tokyo | Istanbul | Dubai | Shanghai | Mumbai | Bangkok | Sydney

New York, London, Prague, Iceland, Rocky Mountains, Angkor Wat, Sri Lanka, Poland, Myanmar, and much more!
hkskyline no está en línea   Reply With Quote

Sponsored Links
Old February 27th, 2013, 04:28 PM   #2
Jan
High there, what's up!
 
Jan's Avatar
 
Join Date: Jul 2002
Location: SkyscraperCity
Posts: 27,371
Likes (Received): 15900

In 2050, that article will tell you more about how we were fantasizing about the future in 2013, then what the world will look like in 2050.

Fantasizing is a good thing though
Jan no está en línea   Reply With Quote
Old February 27th, 2013, 04:46 PM   #3
Kopacz
Registered User
 
Kopacz's Avatar
 
Join Date: Mar 2011
Location: Stalowa Wola
Posts: 1,999
Likes (Received): 1604

Yeah we will most likely not have any of these. Robots, renewable energy and dynamic elements ... nope.
Skyscrapers of the future will be even slimmer and taller, making the most earnings out of a parcel. People will still wash the windows, because it's cheaper to get a few guys do the maintenance than buy a robot, which will most likely cost tens if not thousands of dollars and require fuel, programming and maintenance in itself.
As much as I want the future to be that bright-looking, it most certainly won't. We still see no robots on construction sites, because they do only one thing. Human will do all that for a low price and even more.
As for renewable energy solutions, they will cover only a fraction and most of the time be just too expensive to be used at once. Wind and sun are good, but as energy needs grow, so will the dependence on traditional energy providers.
Bran, nervous system, skin - every building will have high speed internet and tv cables, security alarms and panels that will give shade. Nothing else will be introduced for typical buildings, as the developers want to earn money, and with traditional constructions they just barely make it.
Kopacz no está en línea   Reply With Quote
Old March 7th, 2013, 02:29 AM   #4
simmiles
BANNED
 
Join Date: Mar 2013
Posts: 15
Likes (Received): 5

Quote:
Originally Posted by Kopacz View Post
Yeah we will most likely not have any of these. Robots, renewable energy and dynamic elements ... nope.
Skyscrapers of the future will be even slimmer and taller, making the most earnings out of a parcel. People will still wash the windows, because it's cheaper to get a few guys do the maintenance than buy a robot, which will most likely cost tens if not thousands of dollars and require fuel, programming and maintenance in itself.
As much as I want the future to be that bright-looking, it most certainly won't. We still see no robots on construction sites, because they do only one thing. Human will do all that for a low price and even more.
As for renewable energy solutions, they will cover only a fraction and most of the time be just too expensive to be used at once. Wind and sun are good, but as energy needs grow, so will the dependence on traditional energy providers.
Bran, nervous system, skin - every building will have high speed internet and tv cables, security alarms and panels that will give shade. Nothing else will be introduced for typical buildings, as the developers want to earn money, and with traditional constructions they just barely make it.
I agree that buildings will be slimmer and taller as big cities are running out of real estate.

Virtual Airlines List
__________________

Zefire liked this post
simmiles no está en línea   Reply With Quote
Old March 9th, 2013, 12:44 AM   #5
Victhor
Que paza!!!
 
Victhor's Avatar
 
Join Date: Sep 2002
Location: Spain/Shanghai
Posts: 2,502
Likes (Received): 1707

Quote:
Originally Posted by Jan View Post
In 2050, that article will tell you more about how we were fantasizing about the future in 2013, then what the world will look like in 2050.

Fantasizing is a good thing though
The year 2000 as predicted in 1900
http://www.allcoolandnew.com/the_yea...ed_in_1900.php



Victhor no está en línea   Reply With Quote
Old March 10th, 2013, 10:27 PM   #6
Eric Offereins
The only way is up
 
Eric Offereins's Avatar
 
Join Date: Jan 2004
Location: Rotterdam
Posts: 68,687
Likes (Received): 28299

Looking back at these old predictions and see what has become is just as interesting.
Eric Offereins no está en línea   Reply With Quote
Old March 11th, 2013, 11:18 AM   #7
Jan
High there, what's up!
 
Jan's Avatar
 
Join Date: Jul 2002
Location: SkyscraperCity
Posts: 27,371
Likes (Received): 15900

here is what the apartment tower of the future would look like in 1884



The "history of the future" is a fascinating topic, here is a good Q&A about it.
Jan no está en línea   Reply With Quote
Old March 11th, 2013, 01:02 PM   #8
little universe
A Living Sculpture
 
little universe's Avatar
 
Join Date: Jan 2008
Location: South by Southeast
Posts: 11,346

From archdaily.com





Quote:

Arup Envisions the Skyscrapers of 2050




It is estimated that by 2050, 75 percent of the worlds – then 9 billion strong – population will live in cities. Urban Sprawl is already problematic and planners are faced with new challenges as they aim to build towards the sky rather than the horizon. In addition, cities are increasingly faced with climate change, resource scarcity, rising energy costs, and the possibility of future natural or man-made disasters. In response to these issues, Arup has proposed their vision of an urban building and city of the future.


(Photo: Arup's Envision of the Skyscrapers in 2050)

In their proposal, titled “It’s Alive!”, they imagine an urban ecosystem of connected ‘living’ buildings, that not only create space, but also craft the environment. According to Arup, buildings of the future will not only produce energy and food, but will also provide its occupants with clean air and water.

Arup begins throwing out the idea that a building is a passive shell. In their vision, each building is a ‘living organism’ with a nervous system of sensors exchanging data with a central ‘brain’, which controls the energy, lighting and façade systems. The building could modify itself to suit climate, time of day and occupation. However, they also envision connecting these buildings together to optimize the production and consumption of energy, food, and water throughout the city.

More radically, each building would physically change too. The basis of each tower is a permanent structural frame of floor slabs. Into this frame, they would integrate prefabricated modules, tailored to the occupants and repaired, upgraded and replaced – as needed – by robots. The building could change to keep up to date with shifting use, climate, technological advances and the personalities of its occupants. Smaller components would be digitally fabricated on-site to allow for rapid customization.

Energy for the building would be provided by a painted photovoltaic façade, fuel cells and downdraught-controlling turbines, while algae pods would produce bio-fuel for the city’s public transport. Information about the building’s energy usage would be displayed on huge OLED (organic light-emitting diode) surfaces on the façade. Drinking water would be harvested from atmospheric moisture by modified turbines. The water would be recycled and reused for urban farming, producing food within the building’s green spaces. Nano particle air filters and surfaces would clean the air and remove CO2.

Arup is far from being the first to propose a vision of the future In fact, their proposal shares common features with many past suggestions, which tend to be as brilliantly innovative as they are completely misguided. A possible reason for this discord, between the vision and the future, is that we tend to see the problems facing futurlings as exaggerated versions of current concerns, while failing to predict the major cultural, political and economic shifts that inevitably happen.

In the 1920’s, president of the Architectural League of New York, Harvey W. Corbett offered his vision for the American city of the tomorrow. With city-centers becoming increasingly overcrowded, he imagined vertically stratifying the city according to function. Apartments and living space would be atop half-mile tall skyscrapers, beneath would be schools, offices, then restaurants. The city’s roads and railways would be buried underground, leaving vast pedestrian concourses at ground level. For it’s ingenuity, his plan failed to account for America’s mass exodus to the suburbs after WWII, which stemmed the city-center population boom.


(Photo: Harvey W. Corbett's American City of Tomorrow )

Hopping on the same post-war, suburban, bandwagon, the British government also passed legislation to speed up the development of satellite towns to ease London’s population problem. One idea, which was briefly considered in the 1950’s, was to build, British architect Geoffrey Alan Jellicoe’s, prototype for the future city. The snappily titled ‘Motopia’ flipped Corbett’s ideas on their head; he put all of the town’s roads on top of its rectangular apartment blocks, leaving everything below free for pedestrians.


(Photo: 'Motopia' / Geoffrey Alan Jellicoe )

In the 1960′s, inspired by the new fluid society, Archigram proposed that not just the cars but also the entire city itself should be a mobile affair. Their ‘Plug in City’ proposed a city of concrete mega structures, which could hold removable living quarters. Taking the moving city concept to an even more psychedelic level, they proposed ‘The Walking City’ – a metropolis carried on the back of a sentient robot, who would roam the landscape at will, delivering his citizens to different areas as needs and resources dictated. However, the age of the mega robo-city was regretfully cut short by the oil crises of the 1970’s and focus on efficiency, sustainability and economy.


(Photo: 'Walking City' / Ron Herron)

As offbeat as these proposals seem, it is worth noting that the basic ideas of segregating pedestrians, customizable modules and a robot at the controls live on in Arup’s proposal today.

__________________
我爱北京天安门,天安门上太阳升。
我爱北京朝阳门,朝阳门外高楼起!

I love Beijing TiananMen, Rising Sun upon it.
I love Beijing ChaoyangMen, Rising Skyscrapers beyond it!


Yellow Fever liked this post

Last edited by little universe; March 11th, 2013 at 01:10 PM.
little universe no está en línea   Reply With Quote
Old March 11th, 2013, 01:22 PM   #9
little universe
A Living Sculpture
 
little universe's Avatar
 
Join Date: Jan 2008
Location: South by Southeast
Posts: 11,346

from archdaily.com


Quote:

AD Interviews: Andrew Hessel



Architecture is bigger than itself.

The future will pose tremendous challenges to how architecture and cities are conceived, requiring comprehensive and scalable solutions, often found outside of what we traditionally call “architecture”. So after hundreds of interviews with architects that we’ve conducted, we realized that in order to confront these challenges we needed to expand our focus. For the first time, we invited to our office an “architect” of life, Andrew Hessel, co-chair of the Biotechnology and Bioinformatics Program at Singularity University and leader in the field of synthetic biology (the design of life through the use of information technology).

Andrew’s work focuses on designing viruses with the potential to cure cancer; however, he is fascinated by the ways in which genetic engineering could actually help human beings shape their environment, and how biotechnology will allow us to merge the natural and built worlds:

“We don’t live in nature any more – we put boxes around it. But now we can actually engineer nature to sustain our needs. All we have to do is design the code and it will self-create. Our visions today – if we can encapsulate them in a seed – [will] grow to actually fulfill that vision. [...] One day, who knows, maybe we’ll plant a seed and grow a skyscraper, that has all the nutrients it needs to stay warm, to literally react to our environment, maybe even keep an eye on us, protect us, nurture us. It’s just all in the design.”

What if we really could “plant” and “grow” a house? What if we could use modified trees as street lamps? Clearly, this disrupts the way we traditionally conceive of architecture, but it also opens many doors for a more sustainable future.

Andrew has recently joined Autodesk as a researcher for “creating platforms for imagining, designing, and creating molecular and living systems”. Autodesk is entering the nanoscale engineering business and exploring into software for printing tissue and 4D materials. So, if the company that produces the most used tools for the architecture industry is now exploring and making these new worlds accessible, why shouldn’t architecture embrace it?

__________________
我爱北京天安门,天安门上太阳升。
我爱北京朝阳门,朝阳门外高楼起!

I love Beijing TiananMen, Rising Sun upon it.
I love Beijing ChaoyangMen, Rising Skyscrapers beyond it!

little universe no está en línea   Reply With Quote
Old March 11th, 2013, 06:42 PM   #10
hkskyline
Hong Kong
 
hkskyline's Avatar
 
Join Date: Sep 2002
Posts: 86,508
Likes (Received): 17826

The Rise Of The Supertalls
Engineering advances have architects striving for the mile-high skyscraper.

By Clay Risen Posted 02.15.2013 at 11:00 am
Popular Science

Barely 18 months after 9/11, Baker returned to New York—this time to talk about designing the world’s tallest building. The firm won the contract; six years later, the Burj Khalifa in Dubai topped out at 2,717 feet, more than half a mile tall.

Rather than an era of architectural modesty, the decade since 9/11 has seen a flowering of skyscraper construction. In the 70 years before 9/11, the record for the tallest building grew 230 feet. Since then, it has shot up 1,234 feet. And it’s poised to rise much higher over the next decade. Today’s tallest skyscrapers are new in every respect: new structures, new materials, designed and tested with new methods. The result isn’t just taller buildings but an entirely new category of building: the supertall skyscraper.

Technically, the supertall category, as defined by the Council on Tall Buildings and Urban Habitat, covers anything taller than 300 meters, or 984 feet. That includes the 1,250-foot Empire State Building, a supertall half a century before the term’s invention. The two World Trade Center towers, which began to rise in 1966, reached 1,368 and 1,362 feet. But only within the past 15 years have architects and engineers begun to see supertalls as a separate class, with its own challenges and opportunities. “When you get above the World Trade Center size, you’ve got to change your fundamental thought process,” Baker says.

Baker is a tall, professorial type given to illustrating his comments with back-of-a-napkin sketches. Last October, we met for coffee across the street from 30 Rockefeller Plaza in New York. The iconic 850-foot tower opened in 1933, capping a frenzied era of ultra-tall-skyscraper construction. Then the growing stopped. For the next 30 years, steel-frame towers like 30 Rock and the Empire State Building seemed to be as high as architects could go.

That began to change in the mid-1960s, when an engineer named Fazlur Khan, one of Baker’s predecessors at SOM, introduced a new structural system called the tube. Khan replaced the traditional internal steel frame with a series of columns running up the outside of the building. The columns are connected to one another and to the building’s core, which houses the elevators, stairs, and utilities. That way, the strongest part of the building is on the outside, where it can best resist wind—which, above 40 stories or so, can be a greater concern than gravity.

The advent of the tube set off a surge in tall buildings in the ’60s and ’70s, including the John Hancock Center, the Sears Tower, and the World Trade Center. But by the time Baker arrived at SOM in the early 1980s, architects and engineers had run into new problems. The tube has a major limitation: It can go as high as an architect wants but only if the base grows proportionally. “If you make it twice as tall, you have to make it twice as wide and twice as deep, and the volume goes up by a factor of eight,” Baker says. That won’t work for a supertall building—150 floors means several million square feet of office space, much of it deep inside the building, enough to make investors nervously loosen their ties and look for the closest exit.

In the mid-1990s, two things happened that helped push architects beyond the floor-space conundrum, both of which were critical in unleashing the supertall revolution. The first was economic. The tallest skyscrapers used to contain mostly office space. Now supertalls are home to hotels, condominiums, shopping centers, and restaurants. Residential and retail spaces require narrower floor plates than offices, which allows buildings to go higher with the same amount of material while also providing a diversity of real-estate options that make very tall buildings easier to fill. In 2000, only five of the 20 tallest buildings in the world were mixed-use; by 2020, only five won’t be.

The move to mixed-use towers facilitated the second big shift in skyscraper design: discarding the tube itself. In 1998, Baker and Adrian Smith—an SOM architect who designed many of the firm’s tallest projects, including the Burj Khalifa, before leaving to start his own company—released their plan for Chicago’s 7 South Dearborn. The tower was supermodel-slim: It would have risen 2,000 feet on just a quarter of a city block. Instead of a tube, they used a “stayed mast,” which featured a central core closely surrounded by eight enormous columns, out from which cantilever the top 60 of 108 stories of mixed-use space.

The dot-com recession scotched the construction of 7 South Dearborn, but its innovative approach inspired architects and engineers to design dozens of “post-tube” skyscrapers. Baker and Smith teamed up again on the Burj Khalifa, and again they came up with an entirely new structural system, the “buttressed core.” It involves a central, hexagonal, concrete core, on three sides of which they placed triangular buttresses. Imagine a rocket ship with three long, thin stabilizing fins.


Above And Below: When completed in 2017, the 2,087-foot Wuhan Greenland Center could be the world’s third-tallest building. Adrian Smith + Gordon Gill Architecture

Of course, it’s not enough simply to design a tall building; architects and engineers also have to figure out how to move people through it. They’ve turned to solutions including sky lobbies, double-decker elevators, and so-called destination-dispatch elevators. Still, even the smartest elevators can rise at only about a kilometer a minute and descend at only about two thirds of that—otherwise most passengers’ ears can’t withstand the pressure.

To go even higher will require a radical rethinking of the elevator itself. “If you’re going really tall, then you’ve got to get rid of the cables,” says Leslie Robertson, the chief structural engineer for the original World Trade Center. The practical limit of conventional hoist elevators, he said, is about 1,500 feet. “You need, for example, a car that’s driven electromagnetically. That’s certainly the wave of the future.”

Last year, a company called MagneMotion unveiled a cableless elevator powered by a linear synchronous motor, akin to the maglev motors on some trains. MagneMotion’s elevator, developed for the U.S. Navy, is designed to move ammunition around a ship, but the company says it could easily adapt it for passengers.

Today’s supertalls are different both in design and composition. Steel was once the material of choice for high-rise buildings, but engineers have begun to jettison steel in favor of concrete. Leonard Joseph, a structural engineer with the firm Thornton Tomasetti, says, “This concrete is not your grandpa’s cement and stone and water.” Rather, it involves complex recipes of chemicals and advanced materials, including microfibers that can replace bulky steel rebar.

Structural steel has a compressive strength of about 250 megapascals; in the 1950s, the strongest concrete could withstand about 21 megapascals, limiting all-concrete structures to about 20 floors. Today’s strongest concrete tops 130 megapascals, and the addition of microfibers could nearly double that number. 
Another advantage is that concrete structures have a greater mass than steel structures—thus a concrete tower can be thinner than a steel one and still have the same resistance to wind forces. Concrete, unlike steel, doesn’t need fireproofing.

As some engineers move toward concrete, others are already thinking beyond it, to carbon-fiber composites, the same lightweight, superstrong material that provides the structure in racing bikes and jet aircraft. But scientists will need to work out some significant challenges. Not only is carbon fiber very expensive, but its advantage—its lightness—would also be disturbing for anyone inside the building. People are used to the solidity of concrete and steel under their feet; in a carbon-fiber building, they would feel like they were walking on a drumhead, a disconcerting sensation at 1,500 feet.

As buildings rise taller, they face a series of increasingly complex forces. At ground level, a breeze might barely register. A hundred floors up, it could be gusting at 40 mph. Of particular concern to engineers is something called vortex shedding: As wind passes the sharp edges of buildings, it creates eddies, which pull on the structures in unpredictable ways.

The ability of engineers to model external forces has also enabled the growth of buildings. Until the 1970s, engineers had to overdesign towers with redundant strength because there was no way to test a building until it was built. Around that time, engineers began wind-tunnel-testing models. But it wasn’t until fast, cheap computing power and 3-D printing arrived that design firms could test many scenarios rapidly.

These days wind-engineering firms can churn out multiple 3-D models of a building in hours, then test them in quick succession in a specialized wind tunnel. “They can go through 18 variations in a day,” says Baker. “It’s a long day, but still.” Hundreds of sensors cover each model, taking hundreds of pressure readings a second that engineers later feed into a computer simulation that shows where the building is weakest. Toward the end of the process, they even re-create a scale version of its surroundings: hills, other buildings, even pedestrians, all of which create complex wind patterns.

Wind-tunnel analysis has helped engineers develop solutions to vortex shedding, such as rounded edges and notches at a building’s corners, and dampers—similar to shock absorbers—that reduce a tower’s tendency to move in the breeze. Without them, many supertalls would sway wildly; even if they didn’t fall apart, they’d be impossible to work in. “You’re on top of a wet noodle, and you get a really sickening ride,” Joseph says.

In 1906, not long into the dawn of the skyscraper age, the landscape architect H.A. Caparn called the new building type “a revolt against the laws of economics.” The only justification for going so tall, he said, was ego and money. More than a hundred years later, critics still level that charge. It’s no coincidence, they say, that supertalls are concentrated in places like the Persian Gulf and China. They’re like architectonic hothouse flowers, growing in the artificial climate of money and bad sense.

Yet rather than a revolt against economics, supertalls could be its purest expression. Dubai and Shanghai aren’t ancient Egypt or 17th-century France, where a monarch could will a pyramid or palace into existence. The market, not the man, determines whether a supertall gets built.

Take, for example, the Burj Khalifa. On its own, the building represents valuable real estate. But its developer, Emaar Properties, also made it the centerpiece of a new business and residential district, charging a premium for properties with clear views of the skyscraper. Even if the Burj Khalifa fails to turn a profit, Emaar is betting that its presence will raise the surrounding property value enough to more than offset the difference.

Real-estate bets aside, something more fundamental drives the proliferation of supertalls: demographics. By 2050, the world population will have grown to nine billion, from about seven billion today. Some 70 percent of that population will live in urban areas.

For much of the 20th century, urban planning in the developed and developing world was antiurban; the dense verticality of the industrial city was supposed to be a thing of the past. Supertalls represent not just the rejection of that vision but also an embrace of a new synthesis: vertical urbanism.

Buildings like the Burj Khalifa and the Shanghai Tower are often called vertical cities, but they have none of the cluttered vibrancy of 19th-century London or New York’s Lower East Side. In Hong Kong, the 1,588-foot International Commerce Center has its own airport rail link; that combined with a high-end mall, office space, and a hotel inside the tower means visitors can fly into the city, spend weeks in the I.C.C.—and never take a breath of the local air.

Whether we like it or not, that’s the promise of supertall skyscrapers. In 2017, Kingdom Tower in Jeddah, Saudi Arabia, designed by Adrian Smith, will open at an estimated 3,280 feet, replacing the Burj Khalifa as the world’s tallest building. Sitting inside the café at Rockefeller Center with Baker, I asked him whether the Kingdom Tower, at well over a half-mile high, might represent the outer limits of what man could design. Could he do, say, a mile? He thought about it for a moment. “Sure,” he said. All he needed was the right client.

More graphics : http://www.popsci.com/technology/art...ise-supertalls
__________________
Hong Kong Photo Gallery - Click Here for the Hong Kong Galleries

World Photo Gallery - | St. Petersburg, Russia | Pyongyang | Tokyo | Istanbul | Dubai | Shanghai | Mumbai | Bangkok | Sydney

New York, London, Prague, Iceland, Rocky Mountains, Angkor Wat, Sri Lanka, Poland, Myanmar, and much more!
hkskyline no está en línea   Reply With Quote


Reply

Thread Tools

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off

Related topics on SkyscraperCity


All times are GMT +2. The time now is 07:13 AM.


Powered by vBulletin® Version 3.8.11 Beta 4
Copyright ©2000 - 2017, vBulletin Solutions Inc.
Feedback Buttons provided by Advanced Post Thanks / Like (Pro) - vBulletin Mods & Addons Copyright © 2017 DragonByte Technologies Ltd.

vBulletin Optimisation provided by vB Optimise (Pro) - vBulletin Mods & Addons Copyright © 2017 DragonByte Technologies Ltd.

SkyscraperCity ☆ In Urbanity We trust ☆ about us | privacy policy | DMCA policy

Hosted by Blacksun, dedicated to this site too!
Forum server management by DaiTengu